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SUMMARY

A method, based on the modified Newtonian theory, for calculating
aerodynamic forces, moments, and stability derivatives at zero sideslip
angle for combinations of flat plates of arbitrary planform shape and
orientation is presented. Methods for predicting the aerodynamic forces
on hemicylindrical leading edges and spherical-wedge nose sections are
also presented. Equations are derived and several design-type charts
are presented to facilitate computation. Values of the multiplicative
factor used in modifying the Newtonian impact theory to account for
variations in Mach number and the ratio of specific heats are discussed.

INTRODUCTION

Newtonian impact theory as modified according to lees (ref. 1),
where the empirical modification consists of a multiplicative factor
which makes the formula for the pressure coefficient give the correct
stagnation pressure, has proven extremely useful in the prediction of
static forces and moments on bodies at hypersonic speeds. Simplified
methods of application to the steady-state case of the modified theory
without the Busemann centrifugal correction for arbitrary inclined bodies
of revolution are presented in references 2 and 3. An extension of these
Newtonian concepts without the centrifugal correction to the quasi-steady
case has been applied to determine the stability derivatives of bodies
of revolution in references 4, 5, and 6. The use of a quasi-steady
approach for the determination of stability derivatives rather than the
use of an unsteady flow theory, such as that developed by Hayes and
Probstein (ref. 7), may be Justified by the fact that the reduced fre-
quency of the motion of the body is very much smaller than unity at the
free-stream velocities of interest.



The purpose of this analysis is to present a method, based on the

modified Newtonian theory, for calculating the aerodynamic forces, moments, -

and stability derivatives for combinations of flat plates of arbitrary
planform shape and orientation. Because the reduced frequency of motion

of these surfaces is very small compared with unity, the quasi-steady

approach is used and the centrifugal correction is neglected. (The fluid
particles actually follow an accelerated or curved path 1In the case of

an oscillating flat plate, the amount of curvature depending on the
reduced frequency of oscillation.) Methods for predicting the aerody-
namic forces on hemicylindrical leading edges and spherical-wedge nose
sections are also presented. The centrifugal correction 1s also neglected
in the derivation of force and moment expressions for the leading edges

and noses,

because the modified Newtonian impact theory without this cor-

rection has been shown to be in better agreement with experiment (for
example, ref. 8) than the theory with the centrifugal correction.

Application of the present method to a specific configuration is
presented and values of the multiplicative factor used in modifying the
Newtonlan impact theory to account for varistions in Mach number and the
ratio of specific heats are discussed.
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SIMBOLS

distances in x-, y-, and z-directions, respectively, from
the origin of the body-axis system to the centroid of
area of the deflected surface

distances in x-, y-, and z-directions, respectively, from
an arbitrary moment reference center (1) to a second
moment reference center (2)

functions for evaluation of axial-force coefficient on
hemicylindrical leading edge

Axial force
q,S
Rolling moment
q,.S1

axial-force coefficient,

rolling-moment coefficient,

Pitching moment
q,.S1

Normal force
qu

pitching-moment coefficlent,

normal-force coefficient,
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Yawing moment

Cn yawing-moment coefficient, qul
P, - Py
Cp pressure coefficient, ——a;———
Cy side-force coefficient, Side force
Q.S
fl(g),fz(g),fj(g),fu(é) functions for evaluation of force coeffi-
cients on hemicylindrical leading edge
ik moment of inertia of deflected surface with respect to an
axis parallel to the x'-axis and passing through the
centroid of area of the surface
f& moment of inertia of deflected surface with respect to an
axis parallel to the y'-axis and passing through the
centroid of area of the surface
TiY product of inertia of the deflected surface with respect to
a palr of axes parallel to the x' and y' axes and passing
through the centroid of area of the surface
- =
i, 3,k unit vectors in the body-axis system
K multiplicative factor in the Newtonian expression for the
pressure coefficient (see eq. (6))
1 reference length
L length of square-cut section of hemicylindrical leading
edge (fig. 9)
M, free-stream Mach number
n unit vector normal to deflected surface, positive in direc-
tion of Z'-axis
Nl,N2 functions for evaluation of normal-force coefficient on
hemicylindrical leading edge
p,qQ,r angular velocities of the deflected surface about the body-

axls system
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X,Y,Z

XY 2

XI,YI’Zl

loceal static pressure

free-stream static pressure

free-stream dynamic pressure, % R”Mmz

unit radius vector of hemicylindrical leading edge (fig. 9)
or of spherical-wedge nose section (fig. 11), positive
when pointed out of surface

radius of hemicylindrical leading edge (fig. 9) or of
spherical-wedge nose section (fig. 11)

reference area

distance along hemicylindrical leading edge

unit vector parallel to hemicylindrical leading edge

scalar components of vector ﬁ? in the x-, y-, and
z-directions, respectively

velocity normal to deflected surface; arrow over symbol
indicates vector

normal velocity vector at the stagnation line of a hemi-
cylindrical leading edge

free-stream velocity; arrow over symbol indicates vector
body axes
coordinates in body-axis system (see fig. 1)

axes of deflected surface after rotation through angles T,
8, and € (see fig. 2)

coordinates in X', Y', and Z' system of axes

distances in x-, y-, and z-directions, respectively, of a
point on the deflected surface from the centroid of area
of the surface
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distances in x'-, y'-, and z'-directions, respectively, of
a point on the deflected surface from the centroid of
area of the surface

functions for evaluation of side-force ceofficient on
hemicylindrical leading edge

angle of attack (see fig. 1)
sngle of sideslip (see fig. 1)

isentropic exponent (equal to ratio of specific heats for
a perfect gas)

effective value of 7, including effects of lonization
and dissociation

surface orientation angles in preferred order of rotation
(see fig. 2)

angle between the free stream and unit vector normal to
surface

angle defined by figure 9(c)
angle of sweepback of leading edge (fig. 9)

effective angle of sweepback of leading edge (eq. (A3))

angle defined by figure 9(e)

angle defined by figure 9(c)

radius vector from the center of rotation to a point on the
deflected surface, defined by equation (5)

density behind oblique shock

density in free stream

angle between oblique shock and free-stream direction
angle defined by figure 9(d)

functions for evaluation of normal- and axial-force coeffi-
cients on a spherical-wedge nose section

angle defined by figure 11



%o limiting value of ¢ defined by equation (B6)

¥ angle defined by figure 11

Vo limiting value of V¥ defined by equation (B9)
o angular velocity vector, defined by equation (4)
Superscript:

time derivative

Subscripts:

i ith component

1 position 1 for moment reference center
2 position 2 for moment reference center
T equilibrium or trim value

tot total

8 stagnation point

When a, B, p, q, and r are used as subscripts, a dimensionless
derivative is indicated as defined by equations (12).

ANALYSIS

For this analysis, the undeflected surface of a flat plate of
arbitrary planform is considered to lie in the xy-plane of the body-
axis system. Positive directions of distances, flow-direction angles,
and rotational velocitles in this system are illustrated in figure 1.
The deflected surface lies in a transformed plane with the axes oriented
through the angles I, &, and € (in that order), as illustrated in
figure 2. For an arbitrarily deflected flat surface, which lies in the
xy-plane of the body-axis system, rotating about & point with an angular
velocity @ (fig. 3) the magnitude of the normal velocity vector VN

at a distance p from the center of rotation is given as

-

VN = -0V + 0 (8 X p) (1)

H\O O\



\0 O+t

(It is shown in reference 4, that the impact theory, when applied
to a uniformly accelerating motion, gives zero for the force and moment
proportional to the accelerating paremeter (that is, &l1/Ve and Bl V). )

In equation (1), the term . is the unit normal vector of the
deflected surface and can be represented in terms of the body-axls sys-
tem as follows:

E’=Tsin5-3)sin1"cos8+?cosl‘cos8 (2)
The free-stream velocity vector \—l)m 1s
-\70,, = Vw(-_f cos o cos B - J sin B - ¥ sin a cos B) (%)
The angular velocity vector @ is
B =Tp+Jqg+kr ()
and the vector ? 1is glven by

B =Tk + 3y + Kz (5)

The pressure coefficient for the modified Newtonian impact theory
can be expressed as

P P \/ 2
P, T Pe N
Cp = q - K(v“,) (6)

It is to be noted that equation (6) 1s applicable only to those
surface areas that face the flow; for surface areas that are shielded
from the flow it is assumed that Cp = 0. 'The condition that the sur-

face "see" the flow may be expressed as -’25§ S 2215, where 1 is the
angle between the free-stream velocity vector and the unit vector normal

to the surface (fig. 3). Thus,

Veo

51
8<:l

(7)

cos n = -
and the condition that the surface see the flow may also be expressed
as cos n $0O.

The pressure coefficlent can be written, from equations (1) to (6),
as



. [(a.?)(“T;I.X) - (@) - (a.;:)(&};_qz)] (8)

The force and moment coefficients based on the area of the deflected
surface and on some characteristic length 1 are,

—
Cy = .é. k-n ds (9a)

=

2] Lo
o3 53

*UH‘L

5l

(9b)

Cy = - % Cp 3-1 as (9¢)

Co =§ _[/-chp?'ﬁ)ds - ng J]; 2C,T- & ds (9d)
Cy = - 'e% j; yCpK-I dS + % fs 2Cp3- 7 48 (9e)

_ 1 2.2 _l_ .7
cn_-ﬁﬁxcpnd5+szﬂwpind3 (9f)

In a stability analysis, small deviations from some equilibrium
condition are usually of interest. These deviations may be represented
in equations (9) by letting the flow-direction angles be

a = + N
o (10)
B = Bp + OB

where the subscript T indicates the angle corresponding to the equilib-
rium (trim) condition and the A-quantities are small deviations in these
angles.

H\O O\
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At the extreme flight velocities for which this analysis applies,
the rotational velocity parameters pl/ Ve, qZ/Vw, and rl/V@ would
be very much less than unity. The results of an analog study in refer-
ence 9 Indicate that values of qZ/Voo for vehicles considered as typical
for reentry or hypervelocity flight are on the order of 0.0l. Thus, for
the remainder of this analysis values of the rotational velocity param-
eters are assumed to approach zero.

The force and moment coefficients may now be written

Cy = Cy(oq Br) + &Cy )
Cap = CA(aT,BT) + ACp
Cy = Cy(ap, Bp) + ACy
> (11)
Cn = Cm(ch) BT) + ACy
Cy = Cy(oups Bp) + AC,

Cn = Cn(ap Bp) + ACh

Since the quantities Ax and AB are small, use of the small-angle
approximation is permissible. Hence, retaining only first-order terms
in these quantities ylelds, for the derivatives of interest in stability

analyses:
() acp> oo
Cn,, = <—‘> . =5 &(— ok-n as (12a)
_ acA> 1 (acp> 2 -
Ca, = (—— =5 ﬂ - i n as (12v)

3¢ P oc aC
o - __m> 1 f (_2> Rmas . L ff (__P) 7.5
Mg, (E S'LJSXE k-n @S T Sz; Oinds

(lEc)
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= Cy =iffi 1.7 ds
“Aq s L 5 JWgla &
/g0 qu—iO
_[%n
Cmq'<a.q_-£
qu_ﬂ
oC = - 1 ac I)—’d.S
=L wf —2_ k.nds-_ﬂ _—E-l n
LRV YU 51 Ws | L
vooq_—-)o vmq—»o
_<BCY> =_lﬂ<icﬁ) 3o as
CYB MBA&—)O g SMBAB—aO
(),
Cng =\ 38
x 3o lﬂ (BCP) 7.0 as
1 -2 as + = V=
h’f’»'fﬂsx(aae)m_.o“ 5T W g T8/ np 0
=)
“18 " \&8/pp0

(124)

(12e)

(12£)

(12¢)

(12n)

(121)
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(123)

(12k)

(121)



In most analyses the trim value of the sideslip angle B 1is con-
sidered to be zero. This assumption shall be used hereinafter. The
pressure coefficient and the various derivatives under the foregoing
assumptions for the flow-direction angles and the rotational velocities
become

Cp =K cosgn
&)

M, o

oC

(ﬁ)ﬂa—’o = 2K cos ”(TZE cos n)AB-aO

oC
(5__> - o co [ 8) - ()| -
p-0

= 2K cos n(d—f-‘a cos n)c 0

H\O O\~

(T_I%) = 2K cos n[(ﬁ' I’)(‘?') B mﬁ(ﬂ}

Q/
5
It

o con 1[R2NE) + G

r—0 D,

The various scalar products in the expressions (12) and (13) may
be written:

K? = gin &
n-3 = -sin T cos & (14)
E’E’ =cos I" cos B

Substituting equations (2) and (3) into equation (7) ylelds the following
expression for cos n:

cos n = -cos a cos B sin & - 8in B sin I' cos & + sin @ cos B cos I" cos &

(15)
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-3in a sin & + cos a cos " cos ®

"

a%;(cos n)
(16)

- sin T cos ®

EA—B-( cos T])

Substituting equations (13), (14), and (16) into equations (9) and (12)
yields the following expressions for the coefficients and derivatives
of interest:

Cy = K cos®n cos T cos B (172)
Cp = K cos®n sin & (170)
Cy =K cosgn sin T cos & (17¢)
C; = -K cos®n|cos T cos & Y35 | sinrcos B zds (174)
1 5 1 S
S S
Cp = K cos®n(cos T cos & Llyﬁ Xd5 _ sin s UZYN zds (17e)
S 1 S 1 8
s
Ch =K cosen(%in T cos & hlyﬁ XdS , 5in & LZY\ yas (17f)
1 S 1 S
S S
Cy_ = 2K cos 7 —é—(cos n){cos I" cos d (17g)
No, W
Ch, = 2K cos 1 —Q—(cos n)| sin ® (17n)
Ao Ma
_ z dS
Cm, = 2K cos n -——(cos n)l{cos T cos B L[7w xdS _gins LZYN = (171)
s 1 S
CNq = -2K cos 1 cos TI" cos 6(cos T cos B J] . g_S - sin & j:[ %d—g) (i"(j)
S
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Aq='2K cos 1 sin 8(cosI‘cos8j] -——sin&v[f%gs?) (17x)
S
2 2 x° ds xz dS
C = -2K cos 7n{cos“T cos“B X_S2 _2cosT sin & cos & = =
! g 12 8 512 S

2
+ sin2s ﬂ %@S§> (171)
S

CYB = -2K cos 1 sin®Tl cos<5 (17m)

CnB=-2Kcosncos651n1"cosS[[igs—+sin5j]zgi (17n)
S'LS g S
CZB 2K cos n sin T' cos 8(cosI‘cos Sf %?+sin1“cos6 ﬁ ZdS)

(170)

Cn, = 2K cos 1 cos &|sin I'{cos I' cos & —+sin8 ¥z 48
Ip 8125

+sin T cos & ﬂ%%ﬁ +cosl‘sin5f ﬁds (17p)
st sl
C = -2K cosnc0525<cos ﬁzgséi' sin I' cos T ﬂ%%—s
st s 1

+ sin®r ﬂ = s> (17q)

H\O O\
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%2
Cn.,. = =2K cos 1 s1n°T cos®s xZ 48 +2 8in T sin & cos ® xy d5
r 12 ] 2 S
st
+ 5in®® ﬂ as (17r)
8 S
Xy dS yz dS
Cy.. = 2K cos 1 cos B|sin T'fcos I’ cos D L[YH —= + sin & k[7\ —

+sin T cos & L[]n 2X d8), o8 T sin & JOF (17s)
512 8 2 s

Curves of cos 1 and —é—(cos n) as functions of angle of attack

N
and of the surface orientation angles I' and & for zero sldeslip
angle (egs. (15) and (16), are presented in figures 4 and 5, respectively.

If the body-axis system (x, y, and z) is transferred to the cen-
troid of area of the deflected surface, the original distances become

X =X +a
y=y+Db (18)
Zz2=2+c¢

where X, ¥y, and 2z are the distances in the x-, y-, and z-directions,
respectively, of a point on the deflected surface from the centroid of
area of the surface, and where a, b, and c¢ are the distances in the
x-, y-, and z-directions, respectively, from the origin of the body-axis
system to the centroid of area of the deflected surface. Writing the

%-, y-, and z- distances in terms of the coordinate system of the deflected
surface (x', ¥', z') ylelds

- - - N
X = X' cos 8 cos € - ¥' cos & sin ¢

¥ =%x'"(sin T sin & cos € + cos T sin ¢)
+¥'(cos T cos € - sin T sin 5 sin €) > (19)

Z =%'(sin I sin € - cos T sin & cos €)

+¥'(sin " cos € + cos T sin & sin ¢)
J
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Thus, the integrals of equations (17) when expressed in terms of the
surface coordinate system and the transfer distances a, b, and ¢

become:
X =8 20a)
JQP 1)5' 1
{
ds b
[
S
U2 -3 (200
S
x\ as _ | Iy s Iy 5 5
b[7\<7) - = |—==—= cos“¢e + - sin“el cos=d
s S s12 St
T 2
-2 —zg sin € cos € cos2® + (%) (204)

St

2 I I
(Z) as _ —X—(sin I' sin & cos € + cos T sin e)2 + X (cos T cos e
g\l ] 312 512

I
- sin T sin & sin e)2 +2 —K%(sin I sin & cos ¢
St

2
+ cos I sin €)(cos " cos € - sin T sin & sin €) + (%) (20e)

2 I I
\Z]w(é) ds _ —z-(sin I sin € - cos T sin & cos €)© + —§§(sin I' cos €
\1) § 752 S
I
+ cos I sin & sin 6)2 + 2 —zg(sin I sin €
St

2
- cos I" sin & cos €)(sin I cos € + cos T sin & sin €) + (%)

(20r)

F\O O\ It
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I
%? = —Xﬁ cos 5 cos e€(sin I" sin & cos € + cos I' sin €)
St

sin T sin & sin €)

- 2. cos B sin e(cos T cos ¢

sin T sin & sin €)

+ ———[cos ® cos e(cos I" cos €

- cos 8 sin e(sin I sin & cos € + cos T sin e)] + Eg
1

(20g)

—Zg(sin I sin & cos € + cos I sin €)(sin I" sin €

- cos I" sin & cos €) + —I-(cos I' cos €
s12

- sin T sin & sin €)(sin I" cos € + cos T sin & sin €)

I
+ —K%[(sin I'sin 8 cos € + cos I sin €)(sin I" cos ¢
St

+ cos I' sin & sin €) + (cos T cos ¢

- s8in T sin & sin €)(sin I’ sin € - cos T sin & cos e)] + —
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T
blyw ZX\AS _ ¥ 55 5 cos e(sin T sin € - cos T sin & cos €)
s\i2/8 g2

I
- —ZE cos 8 sin e(sin I’ cos € + cos T sin ® sin
St

T

+ —Z%[;os 5 cos €(sin I' cos € + cos I sin & sin
St

- cos B sin e(sin T sin € - cos T sin & cos e)]

€)

€)

ac
+—
12

(201)

where Tk and T& are the moments of inertia of the deflected surface

about axes parallel to the X' and Y' axes and passing through the

centroid of area of the surface, respectively, and Iyxy 1is the product

of inertia of the deflected surface with respect to a palr of axes par-
allel to the X' and Y' axes and passing through the centroid of area

of the surface.

A change in the location of the moment reference center may be

effected by means of the followlng relations:

- al _
Cm2 = le + CNl 1 CAl

NIO

1 |

a
o0 =Cny *+Cyy T +Ca 7

1

Q
o~
|

c|
=Cy = Cy. —— - Cy -
2 Yl T "Ny g Y, 3

1 '

= &_ _ &
CmuQ—CmG1+CNa1 2 CACL]_ 1

1
CN, =Cy. + 2K cos 1 cos T cos 5<sin 8 < - cos I cos &
B2 q, 1

4 ]
C =C + 2K co in 5{sin & & - cos I" cos & &
AQQ Aql s ns (s 7 cos s 1)

al
%)

(21a)

(21v)

(21c)

(214)

(21e)

(21r)

O O\
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[ 2 2. fa' 2
C = - 2K cos cos“T* cos 8(——)
fap Cmql k 1

-2 cos T sin & cos &

a

t

1

c + in26<gl)2}
5 S )

1 'b|
c =C - 2K cos sin T cos ®(sin T cos & & + sin & =
"By~ By k ( 2 T
b' c'
CZBE = Czl31 + 2K cos 1 sin T cos 6(cos I’ cos & Tt sin T" cos ® -T)
5 1\ 2 b'e!
Cy. =Cy - 2K cos 1 cos“8 coseP(9-> +2 sin I cos I' 25—
2
+ sinef(gl) }
1
t ! Tt
Ci,. =Cq. + 2K cos ncos B|sin I'lcos T cos &80 ., sin 5 20
r r 2
2 1 1 1
a'c' b’ 2
+ s8in T cos & + cos T" sin ®{—
12 1
a'd' bc'
Cnp2 = Cnpl + 2K cos 1 cos 8{sin I'|cos T cos B 2 + sin & 2
ot e
+ 8in T cos & 25 ) + cos I' sin 8(2—)
12 1
2 o fal 2 a'b’
Ch,. =C - 2K cos 7|sin“T cos“d(=) + 2 sin T sin ® cos & —
T2 Or, 1 1

+ sinzb(h—

Y]
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(21g)

(21n)

(211)

(215)

(21k)

(211)

(21m)
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where a', b', and c¢' are the distances in the x-, y-, and z-directions,

respectively, from the first moment reference center to the second moment
reference center.

SELECTION OF K

According to Newtonian theory, the value of K should be 2. How-
ever, it is shown in references 1, T, 8, and 10 that more accurate pre-
dictions of experimental results can be obtained if the value of K 1is
chosen to give the correct value for the stagnation pressure coefficient.

For blunt bodies the value of the stagnation pressure coefficient is

o)
_ _ T _ 7 + 3 - 2 1
CP;S—Q P 7+l(l 7+3M°°2> (22)

Thus, at large angles of attack (near 90°), the constant K should have
the value of equation (22). This value of K should also be used in
the relations for the hemicylindrical leading edge (eppendix A) and the
spherical wedge nose (appendix B).

For a flat surface with an attached shock the constant-density solu-
tion (ref. 7), which in the case of the flat surface is the "exact" solu-
tion, gives for the pressure coefficient on the surface

2
= 2_sin7a = 2(1 - %“—)sin2c (2%)

(l - %?)cose(c - a)

Cp
where the density ratio 1s
P
o y -1 2 1
— = B l + 2)4'
P <7 + l)< 7 -1 Mm281n26> (&)
1/2

P -
Ir (??> tan a 1s small, the factor cos 2(0 - a) may be omitted;

and if M5251n20 >> 1, the value for the pressure coefficilent may be
approximated by

Cp = (r + 1)sina (25)

(I e WY o NI
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This result is similar to that obtained from the small-disturbance theory

of reference 11 when the assumption ngsingm >> 1 1is used. The
Newtonian value for the pressure coefficient on an inclined flat plate

is simply

Cp =2 sin2a

Thus, at low angles of attack up to the detachment angle the constant K
should have the value 7y + 1.

The second form of equation (23), which is an "exact" relation,
suggests that the modified Newtonian theory could be applied to the

attached shock case, even when Mmesingo is not very much greater than

unity, provided that the shock angle o 1is used in the Newtonian rela-
tlons rather than the surface angle «a.

The proper value of 7» to be used in determining K is a function
of both the Mach number normal to the oblique shock, M, sin o, and the
altitude. A discussion of the variation of an effective value of vy
which includes the effects of ionization and dissociation for air is
glven in reference 12, and a plot of this variation from this reference
is presented in figure 6. This figure was obtained by use of the 1956
model atmosphere of refererce 13. (Note that figure 6 contains data
from references 14 and 15.) Use of a more recent model atmosphere would
change these curves somewhat. Results incorporating the latest altitude
revisions may be obtained as indicated in reference 12.

APPLICATION OF METHOD

Before a specific example to 1llustrate use of the method is
attempted, the assumptions and restrictions which have been lncorporated
in equations (17) are recapitulated for convenient reference:

(1) Equations (17) are restricted to only those surfaces which "see"
the flow, a condition which may be expressed by cos 7 < 0. When the
surface does not see the flow it is assumed that Cp = 0,

(2) Equations (17) are restricted to zero sideslip angle (B = O).

(3) Equations (17) are strictly valid only for small oscillations
about the equilibrium, or trim, condition, because the small-angle
approximation was used. This approximation permitted retention of only
first-order terms in the expressions for the static stabllity derivatives.



22

ql rl

v and T are assumed
to be vanishingly small in comparison with unity. This condition appears
to be realistic in view of the extreme flight velocitles to which the

method applies.

1
(4) The rotational velocity parameters g—,
oQ

In order to illustrate the procedure used in evaluating the aero-
dynamic coefficients, consider the configuration shown in figure 7.
This configuration consists of flat-plate wing panels, elevons, and
vertical surfaces with hemicylindrical leading edges. Configuration
dimensions (in terms of the length 1) and surface angles are given in
figure 7. The center of gravity of the configuration is located 0.5941
behind the apex of the wing surface.

For purposes of calculation the configuration i1s considered to con-
sist of six separate flat surfaces. These surfaces are the right- and
left-hand wing panels, the right- and left-hand elevons, and the right-
and left-hand vertical surfaces. The geometric properties of these com-
ponents are presented in table I. Also, the double integral expressions
of equations (17) were computed by means of equations (20) and listed
in this teble. Next the values of the normal-force, axial-force, and
pitching-moment coefficients were calculated by use of equations (17,
figure 4, and the results of table I for the individual surfaces for an
angle-of-attack range of 20° to 60°. For this angle-of-attack range the
fuselage was completely hidden from the flow. These coefficients were
then based on the total configuration planform area by multiplying by
the ratio Si/stot’ where S4 1ndicates the area of the component sur-

face. Finally, coefficients for all components were summed to determine
the values for the complete configuration. These values of normal-force,
axial-force, and pitching-moment coefficilents are presented as functions
of angle of attack in figure 8. The Newtonian value of 2 was used for
the constant K throughout these calculations.

The effects of leading-edge bluntness were also calculated by the
method of appendix A. Six separate edges were considered: the right-
and left-hand leading edges of the wing panel, the right- and left-hand
edges at the tip of the wing (these edges fair into the vertical sur-
faces so that the value for the angle ¢ was zero for all angles of
attack), and the leading edges of the right- and left-hand vertical sur-
faces. The pitching-moment contribution of the blunt edges was computed
from the normal- and axial-force coefficlents and the x- and z-components
of the lengths from the center of gravity of the configuration to the
midpoint of the longitudinal axes of the hemicylinders which formed the
edges. The contribution of the spherical-wedge nose section to the
normal- and axial-force coefficients was computed by the method of
appendix B. For this computation the dihedral angle was assumed to be
0°. Tne effect of this approximation is negligible for this case where

H\O O\



H\O OV

23

the actual dihedral angle was only 10°. The pitching-moment contribu-
tion of the spherical-wedge nose sectlon was calculated from the values
of the normal- and axial-force coefficients and the distances in the

x- and z~-directions from the configuration center of gravity to the
origin of the spherical-wedge section.

The normal-force, axial-force, and pitching-moment coefficients for
the complete configuration including the effects of blunt nose and leading
edges are shown as functions of angle of attack in figure 8. The various
stability derivatives were then calculated for the configuration at the
trim angle of attack of 40°. The results of these calculations, which
represent the sum of the contributions of the six flat-plate surfaces
(the effects of blunt leading edges were not included), are presented
below:

Cmy, = -0-0368

Cig = -0.0356
Cag = -0.0005
Cyg = -0.0650
Caq = -0.1139
Cq, = -0.0499
Cy, = -0.0002
Cn, = -0.0002
Cp, = -0.00k2

If the leading edge was so blunt that its contribution to the
stabllity derivatives was important it could be approximated (for the
purpose of obtaining stability derivatives) by several flat-plate sections.

CONCLUDING REMARKS

A method, based on the modified Newtonian theory, for calculating
aerodynamic forces, moments, and stability derivatives at zero sideslip
angle for combinations of flat plates of arbitrary planform shape and
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orientation is presented. Methods for predicting the aerodynamic forces
on hemicylindrical leading edges and spherical-wedge nose sections are
also presented. Equations are derived and several design-type charts
are presented to facilltate computation. The method is 1llustrated by
a sample calculation. Values of the multiplicative factor used in
modifying the Newtonian impact theory to account for variations in Mach
number and the ratlo of specific heats are discussed.

Langley Research Center,
National Aercnautics and Space Administration,
Langley Air Force Base, Va., November 8, 1961.
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APPENDIX A

FORCE COEFFICIENTS FOR HEMICYLINDRICAL LEADING EDGES

A sketch of a hemicylindrical leading edge is shown in figure 9(a).
To facilitate the analysis the leading edge will be considered to con-
sist of a squared leading-edge section (figs. 9(b) and 9(c)) and the end
sections (figs. 9(d) and 9(e)). The analysis for either end is similar
and the results are equivalent so only one end section 1s considered in
this appendix.

The sguared leading-edge section.- The unit vector parallel to the
leading edge can be written in terms of the body system of axes as

-

T cos & sin(A + €) + 31}in 5 sin I sin(A + €) - cos T cos(A + e)]
—_
+ k[—sin 5 cos T sin(A + €) - sin T cos(A + e)]

To, + J, + H, (A1)

The effective sweep angle is defined by the expression
- =
Vo U = -V, sin Ag (A2)
combining equations (3), (Al), and (A2), yields

sin Ag = Uy cos a cos B + Uy sin B + U, sin a cos B (A3)

From figure 9(c), which shows the hemicylindrical leading edge cut
by a plane normal to the unit vector ﬁi the pressure coefficient may

be written
2
N,s
Cp = KC,V, ) cos®o (Ak)

[+2]

where 6 1is the angle between the normal-velocity component at the stag-
nation point and the point at which the Pressure coefficient is to be
computed.

The normal-velocity component at the stagnation point is given by

s = Voo - (% 0)0 = ¥, + T sin A (A5)
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and
VN g = Voo cos Ae
so that
Cp =K cos®Ae cos?e (A6)
The angle ¢ defined in figure 8(c) is given by the expression
2 -
VN,S n= -VN,S cos ¢
or
cos & = 1 (coscncosBsin&—sinBsinl"cos&
cos Ag
+ sin « cos B cos I' cos B) (AT)

The normal-force contribution of the squared leading-edge section
is given by

/2 AL
cN:'e'flTﬁL/-_g fo cpk-?hdedu (28)

where
= - -
?—-\-’l\l—’—scose+uxv°° sin ©
- - -

is the unit radius vector.

The scalar product _12? becomes, after suitable algebraic manipula-
tion,

|

KT = L (Np cos & + Np sin )
cos Ag

where
Ny = '(Uz sin A¢ - sin o cos B)
N, = -(Ux sin B - Uy cos a cos B)

Upon substitution of these expressions into equation (A8) and per-
formsnce of the required integrations the normal-force coefficient for
the squared leading-edge section becomes

H\O OV
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ey = § cos ac[wyz;(6) + yr(2)] (9)
where

£1(8) = %[2 + sin e(2 + coseg)]

£5(8) = 5 cos’t

Curves of these functions are presented in figure 10. When values
for cos Aec and cos ¢ from sin Ae and sin §, respectively, are
computed, care must be taken in determining the quadrant of the angle
so that the cosine values will have the proper signs.

The axial-force and side-force coefficients for the squared leading-
edge section can be determined in a menner similar to that which was
used for the normal-force coefficients. The resulting expressions are

Cp = g cos Ae[Alfl(E) + A2f2(§)] (A10)
where
Ay = -(Ux sin Ag - cos @ cOs B)
Ay = -(Uy sin a cos B - Uz sin B)
and
_ K
ey = § cos ne[r1y(8) + 1p0p(3)] (A11)
where
Y1 = Uy sin Ag - sin B
Y, = -(Ux sin a cos B - U, cos a cos B>

Expressions for the moment coefficients have not been presented,
since these moments are always zero at a point which lies on the lon-
gitudinal axis of the hemicylinder and is midway between the ends of
the hemicylinder. That the moments are zero at this point can be seen
from the fact that the force on any increment of the surface 1s always
directed toward the center of curvature of the surface, which, in the
case of the hemicylinder, is located on the longitudinal axis.
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Although the analysis i1s similar for both the squared leading-edge
section (fig. 9(b)) and the end section (fig. 9(d)), these sections are
treated separately because the limits of integration of the pressure
coefficient over the surface are different.

When g 2 AN 2 &, the upper limit of integration with respect to 6
is 125, as was the case for the squared section, and the lower limit of

integration becomes g - (¢ + A). The angle A may be expressed as a

function of U and T as

cos A = = cot T (A12)

2o [

When % 2 AN 2¢E, the value of U 1is restricted to

OSUSRtan 7 cos ¢ s0 that the upper and lower 1limits of integra-
tion with respect to U are R tan 7 cos ¢ and O, respectively.

When & 2 A 2 0, the upper limit of integration with respect to ©

is g - (¢ - A) and the lower limit remains % - (¢ + A\). For this

case the value of U 1is restricted to R tan v cos ¢ SUSR tan 7, so
that the upper and lower limits of integration with respect to U
become R tan v and R tan 7T cos &, respectively.

The normal-force contribution of the end section of the leading
edge is given by

N R tan T cos & n/2 .
oy = - —— f f CpE-TR 40 du
0 T

2R2tan /2-(&+A)
R tan T n/2-(&-\)
C,k-TR d9 au (A13)
' J; tan T cos & fn/e-(gn\) P

Upon integration the normsl-force coefficient becomes

)]

Cy = £ cos Ae[leE(g)» + szu(g)} (ALk)

no

H\O O\ o
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where

f5(§)= %[cos g(l - % coszg) + (-g— + g)sin g}

fu(é) = é]-‘-[sin £ coseg + (-g— + §>cos g}

Curves of the functions f3(§) and fu(g) are presented in

figure 10.

The axial-force and side-force coefficients for the end section of
the leading edge are obtained in a similar manner with the results

cos Ae[Al%(g) + A2fh(§)] (A15)

PO

CA =
and
K
Cy = 5 cos A[ Y f5(8) + 1,0,(8)] (A16)
It may be noted that an expression for the effective sweep angle

may be found in terms of the parameters No, AQ, Y>. The expression
is

cos Ae =\/N22 + A22 + Y22

Similarly, an expression for the angle ¢ may be found in terms
of the parameters Nl’-—Al’ and Yl. This expression is

Nl cos I" cos & + Al sin & + Yl sin T" cos &
cos £ = —— (A17)
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APPENDIX B
FORCE COEFFICIENTS FOR A SPHERICAL-WEDGE NOSE SECTION

The apex of a swept wing with hemicylindrical leading edges is
often rounded by meking the nose a spherical-wedge section provided the
surface orientation angles T' and € of the wing panels are zero. If
these angles are not zero, the nose is not a spherical-wedge section but
would be approximated by one if both I' and € are small.

The pressure coefficlent for impact theory on a spherical-wedge
nose section is given by the expression

V,.T 2

where the unit radial vector T is given by (fig. 11):

?=_f(cos 5 cos ¢ cos ¥ - sin & sin V) - ?sin ¢ cos ¥
- X(sin & cos @ cos ¥ + cos B sin V) (B2)

Thus, the pressure coefficient is

Cp = K[sin(a. + 8) cos B sin y - cos(a + B)cos B cos @ cos ¥

+ sin B sin @ cos 11:]2 (B3)

The normal-force coefficient is gilven by

¥ )
Cy = __K_2 ° f © Cp k-TR® cos v d¢ ay (BY4)
aR- Yaxf2 YO

which becomes for the simple case when B = o°

H\O O\
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Ve v

2K d _ o
Cy = == cos & \/ﬂ = ®{a+8,¥,A)a¥ - sin & \/ﬁ = V(a+d, v, A)dy (B5)
Nox /2 OF o ~n/2 O ’
where, for tan(a + 5)tan ¥ > cos A,
cos @, = tan(a + 8)tan ¥ (Bha)
and, for tan(a + 8)tan v S cos A,
cos ¢o = cos A (B6DL)

Also,

9 ® = -sin ¥ cos V¥ {[sirﬁ(a + S)Sinew
v

+ % cos®(a + 5)c052w] cos'l[tan(a, + 8)tan \lf]

+ sin(a + 8)cos(a + 8)[2 + -232 sin ¥ cos w} \/l - ta.ng(o. + S)tanEW}

(B7)
% ¥ = cosy {%[sine(a, + 5)sin2¢r + 2 cos®(a + 8)c05211r;| \]l - tan®(a + 8)tandy
- sin(a + 8)cos(a + 8)sin ¥ cos ¥ cos_l[tan(a, + 8)tan WD (B8)
and
T
WO=§-(Q'+6) (B9)
Similarly,

L2 Yo
Cp = %§ sin B u/\ gi o(a+d, V,A)dy + cos B u/\ gi ¥ (o, y,A)dy] (BLO)
-nf2 O -xf2 OV
Values of ¢ and ¥ for a range of values of a + & send A have
been determined from graphical integration of equations (B7) and (m8),
and the results are presented in figure 12. The normal-force and



32

axial-force coefficients due to the spherical-wedge nose section when
B=T=c¢ = 0° can be calculated from the expressions

%§(¢ cos & - ¥ sin B)

Cn
(B11)

i

Ca %§(¢ sin & + ¥ cos B

Expressions for the moment coefficients are not needed, inasmuch
as the force on any increment of the surface is always directed toward
the center of curvature of the surface and the moments are, therefore,
always zero about the origin of a spherical surface.

H\O OV
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Figure l.- Sketch showing positive directions of body system of axes,
flow-direction angles, and rotational velocities.

T691-1



1-1691

37

Y
z

ZI

Figure 2.- Sketch showing positive directions of surface orientation

angles. Undeflected surface lies in XY-plane of body-axis system.
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Figure 3.- Arbitrary flat surface rotating about the origin of the body
system of axes with angular velocity o
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Figure 5.- Continued.
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Figure 5.- Concluded.
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Figure 8.- Calculated serodynamic characteristics of configuration shown
in figure 7.
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-- End section

Squared section

End section

<l

i

(a) Sketch of a hemicylindrical leading edge.

Cp=0

N,s

(c) Bemicylindrical leading edge
cut by & plane normal to the
leading-edge vector

(b) Sketch showing square-cut
section of hemicylindrical
leading edge.

Figure 9.- Geometry of hemicylindrical leading edge.
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(d) End section of hemicylindrical leading edge.

L
A
L
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—
(e) Sketch in plane normal to the leading-edge vector U of end section
of hemicylindrical leading edge.

Figure 9.- Concluded.
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Figure 10.- Functions for the evaluation of aerodynamic force coeffi-
cients on hemicylindrical leading edges.
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Figure 11.- Ceometry of spherical-wedge nose section.

65



66

8 E—— .
;‘ el A deg Sk
e, T i e -
7R P
. — b - A?q
~ 607
f‘\

' 1 A R i
=620 40 6 8 100 20
a+8 deg

Figure 12.- Functions for determining the normal-force and axial-force

coefficients on a spherical-wedge nose. Cy = %§(¢ cos & - § sin 8);

Cp = %§(¢ sin & + § cos B).
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